Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20.979
Filtrar
1.
Nat Commun ; 15(1): 2945, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600094

RESUMO

An inter-regional cortical tract is one of the most fundamental architectural motifs that integrates neural circuits to orchestrate and generate complex functions of the human brain. To understand the mechanistic significance of inter-regional projections on development of neural circuits, we investigated an in vitro neural tissue model for inter-regional connections, in which two cerebral organoids are connected with a bundle of reciprocally extended axons. The connected organoids produced more complex and intense oscillatory activity than conventional or directly fused cerebral organoids, suggesting the inter-organoid axonal connections enhance and support the complex network activity. In addition, optogenetic stimulation of the inter-organoid axon bundles could entrain the activity of the organoids and induce robust short-term plasticity of the macroscopic circuit. These results demonstrated that the projection axons could serve as a structural hub that boosts functionality of the organoid-circuits. This model could contribute to further investigation on development and functions of macroscopic neuronal circuits in vitro.


Assuntos
Axônios , Neurônios , Humanos , Axônios/fisiologia , Neurônios/fisiologia , Organoides/fisiologia , Encéfalo
2.
J Nanobiotechnology ; 22(1): 194, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643117

RESUMO

Several studies suggest that topographical patterns influence nerve cell fate. Efforts have been made to improve nerve cell functionality through this approach, focusing on therapeutic strategies that enhance nerve cell function and support structures. However, inadequate nerve cell orientation can impede long-term efficiency, affecting nerve tissue repair. Therefore, enhancing neurites/axons directional growth and cell orientation is crucial for better therapeutic outcomes, reducing nerve coiling, and ensuring accurate nerve fiber connections. Conflicting results exist regarding the effects of micro- or nano-patterns on nerve cell migration, directional growth, immunogenic response, and angiogenesis, complicating their clinical use. Nevertheless, advances in lithography, electrospinning, casting, and molding techniques to intentionally control the fate and neuronal cells orientation are being explored to rapidly and sustainably improve nerve tissue efficiency. It appears that this can be accomplished by combining micro- and nano-patterns with nanomaterials, biological gradients, and electrical stimulation. Despite promising outcomes, the unclear mechanism of action, the presence of growth cones in various directions, and the restriction of outcomes to morphological and functional nerve cell markers have presented challenges in utilizing this method. This review seeks to clarify how micro- or nano-patterns affect nerve cell morphology and function, highlighting the potential benefits of cell orientation, especially in combined approaches.


Assuntos
Regeneração Nervosa , Nervos Periféricos , Regeneração Nervosa/fisiologia , Nervos Periféricos/fisiologia , Neuritos/fisiologia , Axônios/fisiologia , Neurônios
3.
Nat Commun ; 15(1): 1920, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429280

RESUMO

How sensory systems extract salient features from natural environments and organize them across neural pathways is unclear. Combining single-cell and population two-photon calcium imaging in mice, we discover that retinal ON bipolar cells (second-order neurons of the visual system) are divided into two blocks of four types. The two blocks distribute temporal and spatial information encoding, respectively. ON bipolar cell axons co-stratify within each block, but separate laminarly between them (upper block: diverse temporal, uniform spatial tuning; lower block: diverse spatial, uniform temporal tuning). ON bipolar cells extract temporal and spatial features similarly from artificial and naturalistic stimuli. In addition, they differ in sensitivity to coherent motion in naturalistic movies. Motion information is distributed across ON bipolar cells in the upper and the lower blocks, multiplexed with temporal and spatial contrast, independent features of natural scenes. Comparing the responses of different boutons within the same arbor, we find that axons of all ON bipolar cell types function as computational units. Thus, our results provide insights into the visual feature extraction from naturalistic stimuli and reveal how structural and functional organization cooperate to generate parallel ON pathways for temporal and spatial information in the mammalian retina.


Assuntos
Retina , Células Bipolares da Retina , Animais , Camundongos , Retina/fisiologia , Células Bipolares da Retina/fisiologia , Axônios/fisiologia , Terminações Pré-Sinápticas/fisiologia , Mamíferos
4.
Int J Mol Sci ; 25(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38542483

RESUMO

With the development of single-cell sequencing technology, the cellular composition of more and more tissues is being elucidated. As the whole nervous system has been extensively studied, the cellular composition of the peripheral nerve has gradually been revealed. By summarizing the current sequencing data, we compile the heterogeneities of cells that have been reported in the peripheral nerves, mainly the sciatic nerve. The cellular variability of Schwann cells, fibroblasts, immune cells, and endothelial cells during development and disease has been discussed in this review. The discovery of the architecture of peripheral nerves after injury benefits the understanding of cellular complexity in the nervous system, as well as the construction of tissue engineering nerves for nerve repair and axon regeneration.


Assuntos
Axônios , Traumatismos dos Nervos Periféricos , Humanos , Axônios/fisiologia , Células Endoteliais , Regeneração Nervosa/fisiologia , Células de Schwann/fisiologia , Nervo Isquiático/lesões , Traumatismos dos Nervos Periféricos/genética
5.
J Neural Eng ; 21(2)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38530299

RESUMO

Objective. The development of electrical pulse stimulations in brain, including deep brain stimulation, is promising for treating various brain diseases. However, the mechanisms of brain stimulations are not yet fully understood. Previous studies have shown that the commonly used high-frequency stimulation (HFS) can increase the firing of neurons and modulate the pattern of neuronal firing. Because the generation of neuronal firing in brain is a nonlinear process, investigating the characteristics of nonlinear dynamics induced by HFS could be helpful to reveal more mechanisms of brain stimulations. The aim of present study is to investigate the fractal properties in the neuronal firing generated by HFS.Approach. HFS pulse sequences with a constant frequency 100 Hz were applied in the afferent fiber tracts of rat hippocampal CA1 region. Unit spikes of both the pyramidal cells and the interneurons in the downstream area of stimulations were recorded. Two fractal indexes-the Fano factor and Hurst exponent were calculated to evaluate the changes of long-range temporal correlations (LRTCs), a typical characteristic of fractal process, in spike sequences of neuronal firing.Mainresults. Neuronal firing at both baseline and during HFS exhibited LRTCs over multiple time scales. In addition, the LRTCs significantly increased during HFS, which was confirmed by simulation data of both randomly shuffled sequences and surrogate sequences.Conclusion. The purely periodic stimulation of HFS pulses, a non-fractal process without LRTCs, can increase rather than decrease the LRTCs in neuronal firing.Significance. The finding provides new nonlinear mechanisms of brain stimulation and suggests that LRTCs could be a new biomarker to evaluate the nonlinear effects of HFS.


Assuntos
Hipocampo , Neurônios , Ratos , Animais , Ratos Sprague-Dawley , Neurônios/fisiologia , Hipocampo/fisiologia , Axônios/fisiologia , Região CA1 Hipocampal/fisiologia , Estimulação Elétrica/métodos
6.
J Neural Eng ; 21(2)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38547529

RESUMO

Objective.Neuromodulation, particularly electrical stimulation, necessitates high spatial resolution to achieve artificial vision with high acuity. In epiretinal implants, this is hindered by the undesired activation of distal axons. Here, we investigate focal and axonal activation of retinal ganglion cells (RGCs) in epiretinal configuration for different sinusoidal stimulation frequencies.Approach.RGC responses to epiretinal sinusoidal stimulation at frequencies between 40 and 100 Hz were tested inex-vivophotoreceptor degenerated (rd10) isolated retinae. Experiments were conducted using a high-density CMOS-based microelectrode array, which allows to localize RGC cell bodies and axons at high spatial resolution.Main results.We report current and charge density thresholds for focal and distal axon activation at stimulation frequencies of 40, 60, 80, and 100 Hz for an electrode size with an effective area of 0.01 mm2. Activation of distal axons is avoided up to a stimulation amplitude of 0.23µA (corresponding to 17.3µC cm-2) at 40 Hz and up to a stimulation amplitude of 0.28µA (14.8µC cm-2) at 60 Hz. The threshold ratio between focal and axonal activation increases from 1.1 for 100 Hz up to 1.6 for 60 Hz, while at 40 Hz stimulation frequency, almost no axonal responses were detected in the tested intensity range. With the use of synaptic blockers, we demonstrate the underlying direct activation mechanism of the ganglion cells. Finally, using high-resolution electrical imaging and label-free electrophysiological axon tracking, we demonstrate the extent of activation in axon bundles.Significance.Our results can be exploited to define a spatially selective stimulation strategy avoiding axonal activation in future retinal implants, thereby solving one of the major limitations of artificial vision. The results may be extended to other fields of neuroprosthetics to achieve selective focal electrical stimulation.


Assuntos
Retina , Próteses Visuais , Retina/fisiologia , Células Ganglionares da Retina/fisiologia , Microeletrodos , Axônios/fisiologia , Estimulação Elétrica/métodos
7.
Cell Rep ; 43(3): 113871, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38451816

RESUMO

We examined the distribution of pre-synaptic contacts in axons of mouse neurons and constructed whole-brain single-cell neuronal networks using an extensive dataset of 1,891 fully reconstructed neurons. We found that bouton locations were not homogeneous throughout the axon and among brain regions. As our algorithm was able to generate whole-brain single-cell connectivity matrices from full morphology reconstruction datasets, we further found that non-homogeneous bouton locations have a significant impact on network wiring, including degree distribution, triad census, and community structure. By perturbing neuronal morphology, we further explored the link between anatomical details and network topology. In our in silico exploration, we found that dendritic and axonal tree span would have the greatest impact on network wiring, followed by synaptic contact deletion. Our results suggest that neuroanatomical details must be carefully addressed in studies of whole-brain networks at the single-cell level.


Assuntos
Axônios , Neurônios , Animais , Camundongos , Axônios/fisiologia , Encéfalo , Terminações Pré-Sinápticas
8.
J Neurosci ; 44(14)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38429108

RESUMO

Treatments accelerating axon regeneration in the nervous system are still clinically unavailable. However, parthenolide promotes adult sensory neurons' axon growth in culture by inhibiting microtubule detyrosination. Here, we show that overexpression of vasohibins increases microtubule detyrosination in growth cones and compromises growth in culture and in vivo. Moreover, overexpression of these proteins increases the required parthenolide concentrations to promote axon regeneration. At the same time, the partial knockdown of endogenous vasohibins or their enhancer SVBP in neurons facilitates axon growth, verifying them as pharmacological targets for promoting axon growth. In vivo, repeated intravenous application of parthenolide or its prodrug di-methyl-amino-parthenolide (DMAPT) markedly facilitates the regeneration of sensory, motor, and sympathetic axons in injured murine and rat nerves, leading to acceleration of functional recovery. Moreover, orally applied DMAPT was similarly effective in promoting nerve regeneration. Thus, pharmacological inhibition of vasohibins facilitates axon regeneration in different species and nerves, making parthenolide and DMAPT the first promising drugs for curing nerve injury.


Assuntos
Axônios , Sesquiterpenos , Camundongos , Ratos , Animais , Axônios/fisiologia , Regeneração Nervosa/fisiologia , Microtúbulos/metabolismo , Sesquiterpenos/farmacologia , Sesquiterpenos/metabolismo
9.
Neurosci Lett ; 826: 137724, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38467271

RESUMO

Dorsal root avulsion injuries lead to loss of sensation and to reorganization of blood vessels (BVs) in the injured area. The inability of injured sensory axons to re-enter the spinal cord results in permanent loss of sensation, and often also leads to the development of neuropathic pain. Approaches that restore connection between peripheral sensory axons and their CNS targets are thus urgently need. Previous research has shown that sensory axons from peripherally grafted human sensory neurons are able to enter the spinal cord by growing along BVs which penetrate the CNS from the spinal cord surface. In this study we analysed the distribution of BVs after avulsion injury and how their pattern is affected by implantation at the injury site of boundary cap neural crest stem cells (bNCSCs), a transient cluster of cells, which are located at the boundary between the spinal cord and peripheral nervous system and assist the growth of sensory axons from periphery into the spinal cord during development. The superficial dorsal spinal cord vasculature was examined using intravital microscopy and intravascular BV labelling. bNCSC transplantation increased vascular volume in a non-dose responsive manner, whereas dorsal root avulsion alone did not decrease the vascular volume. To determine whether bNCSC are endowed with angiogenic properties we prepared 3D printed scaffolds, containing bNCSCs together with rings prepared from mouse aorta. We show that bNCSC do induce migration and assembly of endothelial cells in this system. These findings suggest that bNCSC transplant can promote vascularization in vivo and contribute to BV formation in 3D printed scaffolds.


Assuntos
Células-Tronco Neurais , Traumatismos da Medula Espinal , Camundongos , Humanos , Animais , Crista Neural , Células Endoteliais , 60489 , Regeneração Nervosa/fisiologia , Raízes Nervosas Espinhais/lesões , Medula Espinal , Axônios/fisiologia , Impressão Tridimensional
10.
PLoS Comput Biol ; 20(3): e1011846, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38489374

RESUMO

In a variety of neurons, action potentials (APs) initiate at the proximal axon, within a region called the axon initial segment (AIS), which has a high density of voltage-gated sodium channels (NaVs) on its membrane. In pyramidal neurons, the proximal AIS has been reported to exhibit a higher proportion of NaVs with gating properties that are "right-shifted" to more depolarized voltages, compared to the distal AIS. Further, recent experiments have revealed that as neurons develop, the spatial distribution of NaV subtypes along the AIS can change substantially, suggesting that neurons tune their excitability by modifying said distribution. When neurons are stimulated axonally, computational modelling has shown that this spatial separation of gating properties in the AIS enhances the backpropagation of APs into the dendrites. In contrast, in the more natural scenario of somatic stimulation, our simulations show that the same distribution can impede backpropagation, suggesting that the choice of orthodromic versus antidromic stimulation can bias or even invert experimental findings regarding the role of NaV subtypes in the AIS. We implemented a range of hypothetical NaV distributions in the AIS of three multicompartmental pyramidal cell models and investigated the precise kinetic mechanisms underlying such effects, as the spatial distribution of NaV subtypes is varied. With axonal stimulation, proximal NaV availability dominates, such that concentrating right-shifted NaVs in the proximal AIS promotes backpropagation. However, with somatic stimulation, the models are insensitive to availability kinetics. Instead, the higher activation threshold of right-shifted NaVs in the AIS impedes backpropagation. Therefore, recently observed developmental changes to the spatial separation and relative proportions of NaV1.2 and NaV1.6 in the AIS differentially impact activation and availability. The observed effects on backpropagation, and potentially learning via its putative role in synaptic plasticity (e.g. through spike-timing-dependent plasticity), are opposite for orthodromic versus antidromic stimulation, which should inform hypotheses about the impact of the developmentally regulated subcellular localization of these NaV subtypes.


Assuntos
Segmento Inicial do Axônio , Canais de Sódio Disparados por Voltagem , Segmento Inicial do Axônio/fisiologia , Canal de Sódio Disparado por Voltagem NAV1.6/ultraestrutura , Axônios/fisiologia , Neurônios/fisiologia , Potenciais de Ação/fisiologia
11.
J Neurosci ; 44(11)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38479812

RESUMO

The axon is a neuronal structure capable of processing, encoding, and transmitting information. This assessment contrasts with a limiting, but deeply rooted, perspective where the axon functions solely as a transmission cable of somatodendritic activity, sending signals in the form of stereotypical action potentials. This perspective arose, at least partially, because of the technical difficulties in probing axons: their extreme length-to-diameter ratio and intricate growth paths preclude the study of their dynamics through traditional techniques. Recent findings are challenging this view and revealing a much larger repertoire of axonal computations. Axons display complex signaling processes and structure-function relationships, which can be modulated via diverse activity-dependent mechanisms. Additionally, axons can exhibit patterns of activity that are dramatically different from those of their corresponding soma. Not surprisingly, many of these recent discoveries have been driven by novel technology developments, which allow for in vitro axon electrophysiology with unprecedented spatiotemporal resolution and signal-to-noise ratio. In this review, we outline the state-of-the-art in vitro toolset for axonal electrophysiology and summarize the recent discoveries in axon function it has enabled. We also review the increasing repertoire of microtechnologies for controlling axon guidance which, in combination with the available cutting-edge electrophysiology and imaging approaches, have the potential for more controlled and high-throughput in vitro studies. We anticipate that a larger adoption of these new technologies by the neuroscience community will drive a new era of experimental opportunities in the study of axon physiology and consequently, neuronal function.


Assuntos
Axônios , Neurônios , Axônios/fisiologia , Potenciais de Ação/fisiologia , Fenômenos Eletrofisiológicos , Eletrofisiologia
12.
Curr Biol ; 34(8): 1687-1704.e8, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38554708

RESUMO

Neurons rely on the long-range trafficking of synaptic components to form and maintain the complex neural networks that encode the human experience. With a single neuron capable of forming thousands of distinct en passant synapses along its axon, spatially precise delivery of the necessary synaptic components is paramount. How these synapses are patterned, as well as how the efficient delivery of synaptic components is regulated, remains largely unknown. Here, we reveal a novel role for the microtubule (MT)-severing enzyme spastin in locally enhancing MT polymerization to influence presynaptic cargo pausing and retention along the axon. In human neurons derived from induced pluripotent stem cells (iPSCs), we identify sites stably enriched for presynaptic components along the axon prior to the robust assembly of mature presynapses apposed by postsynaptic contacts. These sites are capable of cycling synaptic vesicles, are enriched with spastin, and are hotspots for new MT growth and synaptic vesicle precursor (SVP) pausing/retention. The disruption of neuronal spastin level or activity, by CRISPRi-mediated depletion, transient overexpression, or pharmacologic inhibition of enzymatic activity, interrupts the localized enrichment of dynamic MT plus ends and diminishes SVP accumulation. Using an innovative human heterologous synapse model, where microfluidically isolated human axons recognize and form presynaptic connections with neuroligin-expressing non-neuronal cells, we reveal that neurons deficient for spastin do not achieve the same level of presynaptic component accumulation as control neurons. We propose a model where spastin acts locally as an amplifier of MT polymerization to pattern specific regions of the axon for synaptogenesis and guide synaptic cargo delivery.


Assuntos
Axônios , Microtúbulos , Espastina , Espastina/metabolismo , Espastina/genética , Microtúbulos/metabolismo , Humanos , Axônios/metabolismo , Axônios/fisiologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Vesículas Sinápticas/metabolismo , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia , Sinapses/metabolismo , Sinapses/fisiologia
13.
Cell Rep ; 43(3): 113931, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38492223

RESUMO

In adult mammals, injured retinal ganglion cells (RGCs) fail to spontaneously regrow severed axons, resulting in permanent visual deficits. Robust axon growth, however, is observed after intra-ocular injection of particulate ß-glucan isolated from yeast. Blood-borne myeloid cells rapidly respond to ß-glucan, releasing numerous pro-regenerative factors. Unfortunately, the pro-regenerative effects are undermined by retinal damage inflicted by an overactive immune system. Here, we demonstrate that protection of the inflamed vasculature promotes immune-mediated RGC regeneration. In the absence of microglia, leakiness of the blood-retina barrier increases, pro-inflammatory neutrophils are elevated, and RGC regeneration is reduced. Functional ablation of the complement receptor 3 (CD11b/integrin-αM), but not the complement components C1q-/- or C3-/-, reduces ocular inflammation, protects the blood-retina barrier, and enhances RGC regeneration. Selective targeting of neutrophils with anti-Ly6G does not increase axogenic neutrophils but protects the blood-retina barrier and enhances RGC regeneration. Together, these findings reveal that protection of the inflamed vasculature promotes neuronal regeneration.


Assuntos
Traumatismos do Nervo Óptico , beta-Glucanas , Animais , Neutrófilos , Regeneração Nervosa/fisiologia , Células Ganglionares da Retina/fisiologia , Axônios/fisiologia , Mamíferos
14.
Chaos ; 34(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38427934

RESUMO

The brain is known to be plastic, i.e., capable of changing and reorganizing as it develops and accumulates experience. Recently, a novel form of brain plasticity was described which is activity-dependent myelination of nerve fibers. Since the speed of propagation of action potentials along axons depends significantly on their degree of myelination, this process leads to adaptive change of axonal delays depending on the neural activity. To understand the possible influence of the adaptive delays on the behavior of neural networks, we consider a simple setup, a neuronal oscillator with delayed feedback. We show that introducing the delay plasticity into this circuit can lead to the occurrence of slow oscillations which are impossible with a constant delay.


Assuntos
Bainha de Mielina , Neurônios , Bainha de Mielina/fisiologia , Neurônios/fisiologia , Axônios/fisiologia , Potenciais de Ação/fisiologia , Encéfalo/fisiologia
15.
Klin Monbl Augenheilkd ; 241(2): 162-169, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38412980

RESUMO

Aging is a major risk factor for retinal neurodegenerative diseases. Aged mammalian retinal ganglion cells (RGCs) lack the ability to regenerate axons after injury. Rodent models suggest that older age increases the vulnerability of RGCs to injury and impairs RGC function as well as their functional recovery. Molecular changes - including decreased circulating levels of brain-derived neurotrophic factor (BDNF) - might contribute to impaired RGC dendritic extension during aging. Moreover, age-related mitochondrial dysfunction plays a major role in aging processes, as it leads to reduced adenosine triphosphate and increased generation of reactive oxygen species. Autophagy activity is necessary for the maintenance of cellular homeostasis and decreases with aging in the central nervous system. During aging, vascular insufficiency may lead to impaired oxygen and nutrient supply to RGCs. Microglial cells undergo morphological changes and functional impairment with aging, which might compromise retinal homeostasis and promote an inflammatory environment. Addressing these age-related changes by means of a low-energy diet, exercise, and neurotrophic factors might prevent age-related functional impairment of RGCs. This review focuses on the current understanding of aging RGCs and key players modulating those underlying mechanisms.


Assuntos
Retina , Células Ganglionares da Retina , Animais , Células Ganglionares da Retina/fisiologia , Retina/fisiologia , Axônios/fisiologia , Mamíferos
16.
Neurobiol Aging ; 136: 111-124, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38342072

RESUMO

In mammals, thick axonal calibers wrapped with heavy myelin sheaths are prevalent in the auditory nervous system. These features are crucial for fast traveling of nerve impulses with minimal attenuation required for sound signal transmission. In particular, the long-range projections from the cochlear nucleus - the axons of globular bush cells (GBCs) - to the medial nucleus of the trapezoid body (MNTB) are tonotopically organized. However, it remains controversial in gerbils and mice whether structural and functional adaptations are present among the GBC axons targeting different MNTB frequency regions. By means of high-throughput volume electron microscopy, we compared the GBC axons in full-tonotopy-ranged MNTB slices from the C57BL/6 mice at different ages. Our quantification reveals distinct caliber diameter and myelin profile of the GBC axons with endings at lateral and medial MNTB, arguing for modulation of functionally heterogeneous axon subgroups. In addition, we reported axon-specific differences in axon caliber, node of Ranvier, and myelin sheath among juvenile, adult, and old mice, indicating the age-related changes of GBC axon morphology over time. These findings provide structural insight into the maturation and degeneration of GBC axons with frequency tuning across the lifespan of mice.


Assuntos
Vias Auditivas , Núcleo Coclear , Camundongos , Animais , Vias Auditivas/fisiologia , Microscopia Eletrônica de Volume , Camundongos Endogâmicos C57BL , Axônios/fisiologia , Núcleo Coclear/fisiologia , Bainha de Mielina , Mamíferos
17.
Exp Neurol ; 375: 114741, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38395216

RESUMO

Nuclear factor erythroid 2 like (Nfe2l) gene family members 1-3 mediate cellular response to oxidative stress, including in the central nervous system (CNS). However, neuronal functions of Nfe2l3 are unknown. Here, we comparatively evaluated expression of Nfe2l1, Nfe2l2, and Nfe2l3 in singe cell RNA-seq (scRNA-seq)-profiled cortical and retinal ganglion cell (RGC) CNS projection neurons, investigated whether Nfe2l3 regulates neuroprotection and axon regeneration after CNS injury in vivo, and characterized a gene network associated with Nfe2l3 in neurons. We showed that, Nfe2l3 expression transiently peaks in developing immature cortical and RGC projection neurons, but is nearly abolished in adult neurons and is not upregulated after injury. Furthermore, within the retina, Nfe2l3 is enriched in RGCs, primarily neonatally, and not upregulated in injured RGCs, whereas Nfe2l1 and Nfe2l2 are expressed robustly in other retinal cell types as well and are upregulated in injured RGCs. We also found that, expressing Nfe2l3 in injured RGCs through localized intralocular viral vector delivery promotes neuroprotection and long-distance axon regeneration after optic nerve injury in vivo. Moreover, Nfe2l3 provided a similar extent of neuroprotection and axon regeneration as viral vector-targeting of Pten and Klf9, which are prominent regulators of neuroprotection and long-distance axon regeneration. Finally, we bioinformatically characterized a gene network associated with Nfe2l3 in neurons, which predicted the association of Nfe2l3 with established mechanisms of neuroprotection and axon regeneration. Thus, Nfe2l3 is a novel neuroprotection and axon regeneration-promoting factor with a therapeutic potential for treating CNS injury and disease.


Assuntos
Axônios , Traumatismos do Nervo Óptico , Humanos , Axônios/fisiologia , Neuroproteção , Regeneração Nervosa/fisiologia , Células Ganglionares da Retina/metabolismo , Retina/metabolismo , Traumatismos do Nervo Óptico/metabolismo
18.
Development ; 151(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38345254

RESUMO

EphB1 is required for proper guidance of cortical axon projections during brain development, but how EphB1 regulates this process remains unclear. We show here that EphB1 conditional knockout (cKO) in GABAergic cells (Vgat-Cre), but not in cortical excitatory neurons (Emx1-Cre), reproduced the cortical axon guidance defects observed in global EphB1 KO mice. Interestingly, in EphB1 cKOVgat mice, the misguided axon bundles contained co-mingled striatal GABAergic and somatosensory cortical glutamatergic axons. In wild-type mice, somatosensory axons also co-fasciculated with striatal axons, notably in the globus pallidus, suggesting that a subset of glutamatergic cortical axons normally follows long-range GABAergic axons to reach their targets. Surprisingly, the ectopic axons in EphB1 KO mice were juxtaposed to major blood vessels. However, conditional loss of EphB1 in endothelial cells (Tie2-Cre) did not produce the axon guidance defects, suggesting that EphB1 in GABAergic neurons normally promotes avoidance of these ectopic axons from the developing brain vasculature. Together, our data reveal a new role for EphB1 in GABAergic neurons to influence proper cortical glutamatergic axon guidance during brain development.


Assuntos
Orientação de Axônios , Células Endoteliais , Animais , Camundongos , Axônios/fisiologia , Neurônios GABAérgicos , Camundongos Knockout , Receptores Proteína Tirosina Quinases , Receptor EphB1/metabolismo
19.
Neuron ; 112(3): 331-333, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38330897

RESUMO

Neurostimulation produces unnatural cutaneous sensations with potent analgesic effects in pain syndromes. In this issue of Neuron, Sagalajev et al.1 demonstrate that these sensations are an epiphenomenon and explain how high-frequency stimulation can provide analgesia without these unnecessary sensations.


Assuntos
Parestesia , Estimulação da Medula Espinal , Humanos , Parestesia/terapia , Parestesia/etiologia , Medição da Dor , Dor/complicações , Manejo da Dor , Axônios/fisiologia , Estimulação da Medula Espinal/efeitos adversos
20.
Pflugers Arch ; 476(5): 847-859, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38421407

RESUMO

Increases in the current threshold occur in optic nerve axons with the application of infra-red laser light, whose mechanism is only partly understood. In isolated rat optic nerve, laser light was applied near the site of electrical stimulation, via a flexible fibre optic. Paired applications of light produced increases in threshold that were reduced on the second application, the response recovering with increasing delays, with a time constant of 24 s. 3-min duration single applications of laser light gave rise to a rapid increase in threshold followed by a fade, whose time-constant was between 40 and 50 s. After-effects were sometimes apparent following the light application, where the resting threshold was reduced. The increase in threshold was partially blocked by 38.6 mM Li+ in combination with 5  µ M bumetanide, a manoeuvre increasing refractoriness and consistent with axonal depolarization. Assessing the effect of laser light on the nerve input resistance ruled out a previously suggested fall in myelin resistance as contributing to threshold changes. These data appear consistent with an axonal membrane potential that partly relies on temperature-dependent electroneutral Na+ influx, and where fade in the response to the laser may be caused by a gradually diminishing Na+ pump-induced hyperpolarization, in response to falling intracellular [Na+].


Assuntos
Axônios , Lasers , Nervo Óptico , Sódio , Animais , Ratos , Nervo Óptico/metabolismo , Sódio/metabolismo , Axônios/metabolismo , Axônios/fisiologia , Axônios/efeitos da radiação , Potenciais da Membrana/fisiologia , Masculino , Bumetanida/farmacologia , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...